9483
AiS
Session 1b
Joshua
Foster
Economist's objective: maximize profit.
Profit $=$ Revenue $-$ Cost
Pricing a Drink for Value Creation
Objectives
Group 1 | May El Damatty | Maro Egbedi | Zachary Zarnett-Klein | Judith Osemeke | Iain Smith | Akber Amanulla Khan | |
Group 2 | Olamide Adeboboye | Sean Morris | Rutuja Desai | Kiera Treloar | Awaad Aamir | Valentina Efionayi | |
Group 3 | Angelita Martin | Ishi Khamesra | Aliya Nazeer | Calvin Zehr | Olayinka Adesanya | Ishani Adityan | |
Group 4 | Robert Gray | Sifan Wang | Rio Baudisch-McCabe | Sam Jain | Ella Smylie | Princess Adeniran | |
Group 5 | Avneet Chohan | Mac Astritis | Sebastian Henao | Sam Macy | Gauri Angrish | Derek Adam | |
Group 6 | Samira Jain | Elisabeth Iannucci | Kendall Zhang | Adam Meadows | Bella Natasha Diego | Silvia Pacheco Diaz | Chaitanya Gandhi |
Small Group Task
In your assigned groups, take the next 15 minutes to read the quick case and reflect on the questions it asks.
Be prepared to discuss your responses to these questions when time is up.
How does PRIME Hydration create value internally and externally for RightPrice?
What are the potential pros and cons of selling the drink?
Pros | Cons |
1) | 1) |
2) | 2) |
3) | 3) |
What price do you set and why?
Optimal pricing with marginal analysis.
Select the price for which marginal revenue equals marginal cost ($MR=MC$).
This rule is a workhorse for all of microeconomics.
Demand | Revenue Information | Cost Information | Profit | |||
---|---|---|---|---|---|---|
Price | Quantity | Revenue | Marginal Revenue | Cost | Marginal Cost | Revenue - Cost |
6 | 0 | $6\cdot 0 = 0$ | $-$ | 0 | $-$ | 0 |
5 | 1 | $5\cdot 1 = 5$ | $\frac{5-0}{1-0}=5$ | 1 | $\frac{1-0}{1-0}=1$ | 4 |
4 | 2 | $4\cdot 2 = 8$ | $\frac{8-5}{2-1}=3$ | 4 | $\frac{4-1}{2-1}=3$ | 4 |
3 | 3 | $3\cdot 3 = 9$ | $\frac{9-8}{3-2}=1$ | 8 | $\frac{8-4}{3-2}=4$ | 1 |
2 | 4 | $2\cdot 4 = 8$ | $\frac{8-9}{4-3}=-1$ | 13 | $\frac{13-8}{4-3}=5$ | -5 |
1 | 5 | $1\cdot 5 = 5$ | $\frac{5-8}{5-4}=-3$ | 19 | $\frac{19-13}{5-4}=6$ | -14 |
Marginal Revenue: $MR=\frac{\Delta \text{Revenue}}{\Delta \text{Quantity}}$ and Marginal Cost: $MC=\frac{\Delta \text{Cost}}{\Delta \text{Quantity}}$
What makes applying marginal analysis difficult?
Maximum Price Heuristic.$^\dagger$
Select the price according to $P^*=(P_{\text{max}}+MC)/2$.
$^\dagger$See Cohen et al. (2021) in Management Science for details.
Cohen et al. (2021), Figure 1.
Cohen et al. (2021), Figure 5.
Among 100,000 simulations, this method assigned a price within 13% of the optimal profit over 80% of the time.
A few assumptions underlie this approach.
Would you apply this pricing heuristic to PRIME Hydration?
$P^*=(P_{\text{max}}+MC)/2$
$P^*=(42.48+1.59)/2=22.04$ (in USD)
Key takeaways.