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This paper proposes a new demand estimation method using attention-based language models. We train an

encoder language model in a two-stage process to analyze the natural language descriptions of used cars from

a large US-based online auction marketplace. Our approach enables us to semi-nonparametrically estimate

the demand primitives of our structural model (private valuations and market size) for each vehicle in the

dataset. In the first stage, we fine-tune the language model to encode the target auction outcomes using the

natural language descriptions provided for each vehicle. In the second stage, we project the trained language

model’s encodings into the parameter space of two density estimators: market size and consumer valuation.

The model’s capability to conduct counterfactual analyses within the trained market space is validated using

a subsample of withheld auction data, which includes a set of unique “zero shot” instances.

Key words : Consumer Preferences; Demand Estimation; Large Language Models; Semi-Nonparametric

Estimation; Hedonic Value

1. Introduction
Identifying the determinants of consumer value is a fundamental challenge of sales. For many prod-

ucts, commercial success hinges on how well their features reflect the underlying consumer preferences

in the market, and thus firms have a strong economic incentive to determine how various combi-

nations of features produce value. One common approach to estimating the strength of consumer

preferences is to convert raw, unstructured feature data into a structured dataset that could plausi-

bly delineate the sources of all value. For instance, in a used car market one might collect data on

vehicles’ make, model, year, and miles, while for theater shows one might collect data on the type

of show, cast, venue seat, and day-of-week. Using these data, prices can be modeled as a function of

the overall value, as estimated by summing the hedonic values of the features in the product (Rosen

1974).

As a generic illustration, consider a standard approach presented in Figure 1. First, a set of features

X is defined from a raw, unstructured data source (e.g., vehicle description in a used car market) to

serve as inputs into a structural estimation model F . The structural model produces estimates Ŷ on
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Figure 1 Standard Estimation Model

targets Y (e.g., the sales price of used cars), and an error metric L is used to optimize the parameters

of the structural model.

Although simple and intuitive, a drawback to this approach is that it often involves making a priori

assumptions on the sources and structure of consumer valuations. Without sufficient knowledge of

how to code the true sources of value, one must simply rely (perhaps unscientifically) on intuition

for this task (Ludwig and Mullainathan 2024). And, even with perfect knowledge of the feature set,

feature-based preferences can be diverse, dynamic, and interdependent – potentially requiring com-

plex identification methods in order to estimate the true hedonic values of consumers (Cropper, Deck

and McConnell 1988). Furthermore, any resulting insights will be limited to the defined attributes

and specific market dynamics, as it is not immediate how, for instance, a standard regression-based

inference might apply to an out-of-sample good, or a set of previously unobserved attributes, or under

different market mechanisms.

Motivated by the above limitations and the recent development and applications of natural lan-

guage processing, we offer a new approach to modeling the sources of consumer valuations. Specif-

ically, we feed a detailed text description of a good within a specific market environment to an

attention-based language model, which converts the text into embedding vectors of a high-dimensional,

real-valued space that can numerically represent the good’s underlying demand and market infor-

mation. We label this space as the Value Embedding Space, and each specific embedding vector,

corresponding to a partial piece of the description of a particular good, as Demand Embedding Vec-

tors (DEVs). The benefit of this language-model-based approach is that it can process and interpret

intricate language patterns, contextual information, and nuanced connotations of product features,

and thus generate more complex representations of consumer preferences.

The proposed approach employs a two-stage estimation process, as illustrated in Figure 2. In Stage

1, a language model M is trained to generate DEVs that encode point predictions Ẑ for the target

outcomes Z using textual descriptions of the products of a market as input. To achieve this, a weight

vector H1 is simultaneously optimized to project the DEVs into the prediction space corresponding

to these outcomes. For the empirical illustration of online car auction data, the target outcomes

include metrics on bid values, the number of unique bidders, auction views, watchers, and whether
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Figure 2 Proposed Model

the reserve price was met. Both M and H1 are trained with an error metric L1, ensuring that the

DEVs effectively capture the necessary market information to serve as the foundation for subsequent

econometric analysis.

In Stage 2, a fully connected feedforward network, H2, decodes the market information embed-

ded in the DEVs from Stage 1 into the parameter space of the structural model F , which produces

estimates Ŷ for the target market outcomes Y , which may be a subset of the target market out-

comes Z from Stage 1. This second stage is crucial for enabling robust counterfactual analysis, as it

explicitly constrains the model to use the assumed data generating process to predict the observed

target outcomes. In the empirical illustration, these estimates are obtained using semi-nonparametric

methods to model the probability density functions of consumer valuations and market size for each

auction vehicle’s description. The network H2 is trained with an error metric L2, optimizing over the

predicted outcomes from F while ensuring adherence to the specified structural relationships.

This encoder-decoder approach compresses relevant market information into DEVs during Stage 1

and then transforms it into optimized estimates within the econometric framework in Stage 2. By fine-

tuning the language model in Stage 1, the model learns subtle patterns in product descriptions that

reflect consumer preferences and the value generated by these products, establishing a sophisticated

mapping between unstructured textual features and market outcomes. The structural constraints

imposed in Stage 2 then ensure that counterfactual analyses remain grounded in economic theory,

making the predictions more reliable when simulating market interventions or policy changes. This

approach overcomes key limitations of traditional hedonic models by eliminating the need for a priori

assumptions, enhancing flexibility and scalability across diverse markets and product categories, and

improving the granularity of analysis to detect nuances in consumer preferences and market dynamics.

To illustrate the proposed model, we collected transactional data from a large US online auction

house for used vehicles. Using time-stamped and user-identifiable bids on approximately 80,000 car
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auctions from 2014-2023, we estimate two primitives of demand for our structural model: the distribu-
tion of bidders’ private valuations and the distribution of the number of potential bidders (i.e., market
size). To enrich the diversity of training data provided to our model, we also tasked a generative AI
model with producing nearly 300,000 synthetic descriptions of the vehicles using expert personas that
could evaluate the vehicles from their description (an independent vehicle history report provider; a
certified automotive mechanic; a car enthusiast club president; and a vehicle appraiser). To validate
the final model’s ability to generalize to previously unseen descriptions, we used a holdout sample
of 5,000 authentic auction observations from our dataset, including an ablation study, or “zero shot”
test, for a specific make and model of vehicle – the DMC DeLorean.

Our ability to offer these results is based on two recent developments. First, the scaling of machine
learning algorithms has generated powerful emergent abilities to parse semantic meaning from natural
language. In the context of natural language processing, an attention-based language model’s archi-
tecture allows it to establish nonlinear relationships between various components of a text sequence
(Mikolov, Yih and Zweig 2013, see Qiu et al. (2020) for a survey). After being trained on large swaths
of the Internet to predict missing or “masked” text elements, these models can later be fine-tuned
for alternative natural language applications (Devlin et al. 2018). If tasked with predicting market
outcomes such as prices or bids from the natural language descriptions of products, as we do here,
training the language model will convert its initial semantic representations of goods to demand
representations that are suitable for downstream econometric estimation. Second, we benefit from an
abundance of naturally occurring market data, such as those in our online auctions, that can offer
strong signals of individual consumer valuations while also satisfying the training requirements of a
language model.

The managerial implications of integrating machine learning with economic modeling extend
beyond improved prediction – they redefine how firms generate causal insights for strategic decision
making (Athey 2018). Language models unlock vast new data sources, such as product descriptions
and written consumer feedback. However, their outputs must be structured within econometric mod-
els that enable reliable counterfactual analysis. The contribution of this paper is that our approach
bridges the aforementioned gap by embedding language-model-driven demand signals into a struc-
tural model, and thus allowing managers to move beyond correlation-based forecasting to derive
actionable, policy-relevant insights. This is particularly critical in digital marketplaces, where firms
must anticipate demand shifts, optimize platform design, and refine dynamic pricing strategies in
response to evolving market conditions. By integrating machine learning representations with eco-
nomic inference techniques, our model ensures that machine-driven recommendations align with
underlying economic forces, enhancing their applicability for real-world inferences. However, realiz-
ing this potential requires overcoming key challenges, including bias mitigation, interpretability, and
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model robustness across different market contexts (Van Giffen, Herhausen and Fahse 2022). As firms

increasingly rely on machine learning for decision support, our approach offers a framework for merg-

ing algorithmic flexibility with economic inference, establishing a foundation for machine-powered

business strategy.

The rest of the paper proceeds as follows. Following an overview of the existing literature in Section

2, we provide a more detailed description of the model framework in Section 3, and the technical

model training in Section 4. In Section 5 we provide an overview and summary statistics of the

online auction data, and then in Section 6 provide an empirical illustration of the proposed model

framework, and discuss the numerical results and counter-factual analysis from the online auction

data. Finally, in Section 7, we conclude with some remarks and ideas for future extensions.

Throughout this paper, we adhere to a notational convention in which uppercase letters indicate

random variables, lowercase letters represent their realizations, Greek letters are used to denote model

parameters, and cursive letters denote a model-specific function. As the ensuing empirical illustration

is based on vehicles, we use the term “product” instead of “good,” but stress that the presented

framework equally applies to “services”.

2. Literature Review
With the creation of the transformer architecture (Vaswani et al. 2017), attention-based language

models have achieved unprecedented capabilities in representing the semantic meaning of natural

language. Initially developed for natural language translations, these models have since demonstrated

broad applicability across diverse domains, including text generation (Radford et al. 2019), protein

structure prediction (Jumper et al. 2021), medical image processing (Chen et al. 2021), writing

advertising copy (Chen and Chan 2024), privacy policy changes (Lin et al. 2024), and prediction on

course and instructor evaluation (Wang et al. 2025). More recently, these advancements have led to a

surge in the use of language models for empirical research in economics, business, and management,

where textual data is increasingly leveraged to make economic insights on consumer preferences, firm

strategies, and market and business dynamics (Gentzkow, Kelly and Taddy 2019, Berger et al. 2020,

Ash and Hansen 2023, de Kok 2025).

Although language models have proven effective in areas such as sentiment prediction in customer

service (Puranam, Kadiyali and Narayan 2021), product reviews (Ma and Luo 2023), and financial

disclosures (McCarthy and Alaghband 2024), their potential for demand estimation remains underex-

plored. Recent advances suggest that language models may provide a useful tool for extracting latent

demand signals from natural language descriptions of goods and services, offering new possibilities

for new approaches to demand estimation in a variety of market settings (Timoshenko and Hauser

2019, Wang et al. 2023, Liu 2023, Wang, Zhang and Zhang 2024).
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Furthermore, the integration of machine learning into econometric methods has led to advances

in predictive accuracy and modeling flexibility, particularly in settings where traditional methods

face limitations (Athey and Imbens 2019). Recent research has leveraged deep learning techniques to

capture complex relationships between product attributes and consumer preferences, incorporating

high-dimensional representations derived from structured and unstructured data sources (Adam, He

and Zheng 2024, Aceves and Evans 2024). Language models, in particular, have been used to explore

individual preferences and risk tolerances in a variety of settings (Dillion et al. 2023, Wu et al. 2023,

Goli and Singh 2024, Zhu, Yan and Griffiths 2024, Netzer, Lemaire and Herzenstein 2019).

Although these methods improve predictive performance, a key challenge remains their lack of

structural coherence and interpretability.1 Models that directly estimate economic primitives within

a structural framework are typically better suited for counterfactual analysis (Verma et al. 2024), and

improve performance on “zero-shot” (i.e. novel) problems (Wei et al. 2021), yet many machine learning

approaches lack this foundation. Recognizing this, recent work has explored hybrid approaches that

integrate machine learning representations into structural models, using deep embeddings as inputs to

traditional econometric frameworks (e.g. Vafa, Athey and Blei 2024). These approaches suggest a path

forward for demand estimation methods that combine the flexibility of machine-driven representations

with the interpretability and counterfactual validity of structural econometric models.

3. Econometric and Machine Learning Framework
The framework for our proposed model begins with a set of assumptions over the data generating

process on market demand, outlined in Figure 3. Within a given market environment, the introduc-

tion of a product with description d generates, to an exposed population, two stochastic demand

primitives that together produce an aggregate demand schedule. The first primitive of interest is

1 See Olah et al. (2020), Elhage et al. (2022), Templeton (2024) for language model interpretability methods.
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Table 1 Pedagogical Example of Tokenization and Demand Embedding Vectors
Description d This 1974 BMW 3 . 0 CS was refurb ished ...
Tokens D : d → ~d 713 15524 8588 155 4 288 6842 21 17880 6555 ...
DEVs M : ~d → {~ej} ~e1 ~e2 ~e3 ~e4 ~e5 ~e6 ~e7 ~e8 ~e9 ~e10 ...

V (d), a continuous random variable that produces i.i.d. realizations on the willingness to pay that

consumers have for d. The corresponding distribution function is given by FV (v) = Pr{V (d) ≤ v},

with support on R. The second primitive of interest is N(d), a discrete random variable that rep-

resents the number of potential consumers a description d attracts (i.e. market size). Likewise, this

is defined by the distribution function FN(n) = Pr{N(d) ≤ n}, with support on N. To generate a

demand schedule, we assume that the realization in market size n determines the set of realizations

over valuations {v1, v2, . . . , vn}. Without loss of generality, we assume that the valuations are ordered,

i.e. vn ≤ · · · ≤ v2 ≤ v1. For simplicity, we assume that all consumers have unitary demand, and that

V (d) and N(d) are independent for all d, i.e. fV,N(v,n) = fV (v)fN(n).
Once valuations are realized, consumers engage with the market’s pricing mechanism, which can be

a function of the market structure and available information (as an example) to produce observable

prices. In the context of our empirical application of online vehicle auctions, our structural model F

follows the format of an English auction, which implies that the demand for a vehicle is stochastically

determined when it is up for auction. We do not predetermine the dynamics of V (d) and N(d) or the

conditions for their realization. Instead, we leverage the language model to uncover these dynamics

based on the vehicle’s description, imposed structural model, and available market data. Next, we

discuss the two-stage estimation method for the distributions of V and N , as presented in Figure 2.

3.1. Encoding Economic Information in Market Object Descriptions

The proposed estimation approach uses a language model to estimate the demand characteristics of

a market object from the features represented in its description d. For this task, d is broken down

into a vector of the language model’s most basic unit of text, called a token, which we denote as

d. Tokens are numerical representations of words, subwords (words broken into smaller parts), or

characters. To convert text to tokens, the language model is accompanied by a designated tokenizer,

which is a function D that converts a text string to a vector of integer values within the language

model’s vocabulary set, D : d → ~d. We denote the length of this token vector as dmax. A pedagogical

example of tokenization is provided in Table 1 using the tokenizer we employ in the empirical section

of this study, which has a vocabulary set of approximately 50,000 tokens (Liu et al. 2019).

Attention-based language models are trained to process tokens in a way that encodes the infor-

mation contained within the represented text. In our application, the specific target data that we

train the language model to encode are the relevant and observable market demand information
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available on the object. This implies that each token dj is mapped to a q-dimensional real-valued
encoding vector ~ej ∈ Rq, j = 1, . . . ,dmax, labeled Demand Embedding Vector. In other words, for a
given description d, converted into a vector of tokens ~d, the language model M maps the sequence
of tokens to a corresponding sequence of DEVs (see Table 1),

M : ~d → {~ej}dmax
j=1

One of the key features of how modern language models process tokens to produce embeddings is
their self-attention mechanism. This mechanism allows the model to determine the relevance of each
token in a text based on its relationship with all other tokens (see Turian, Ratinov and Bengio 2010,
Mikolov, Yih and Zweig 2013, Vylomova et al. 2015). This means that language models do not assign
a fixed encoding to each token within its vocabulary set. Rather, the model calculates a weighted
sum of all tokens in the sequence, where the weights reflect the relevance of each token to the one
being encoded. As an example, the DEVs assigned to the tokens for “manual transmission” will be
dependent on the other tokens in ~d, such as whether those representing “Honda” or “Lamborghini”
are present. When paired with fine-tuning methods, this process enables attention-based language
models to generate detailed and context-aware representations of tokens, which is critical to producing
representative DEVs (Li et al. 2020).

An important yet perhaps non-obvious design decision for our application of a language model
is the total number of tokens processed with each description. If object descriptions produce token
sequences of various lengths, then the language model will not be capable of generating consistent
estimates of a token’s contribution to the target variable, even when two tokens have identical demand
vectors. Consequently, in the ensuing empirical analysis, while training the model we fix the number of
tokens the language model processes in every auction to have the same value dmax. In instances where
the tokenizer receives a description that produces more or fewer tokens than dmax, the description is
truncated or padded, respectively, to maintain the fixed sequence length. The empirical analysis on
online vehicle auctions is based on a token embedding space of q = 768 and a token sequence length
of dmax = 512.

3.2. Stage 1 Estimation: Token Level Contributions to Market Outcomes
The goal of the first stage estimation is to (a) train M to encode the representation each token dj ∈ ~d
has as a Demand Embedding Vector ~ej , given the product description d, and, simultaneously, (b)
train a fully connected network head H1, appended to M, to project each DEV ~ej to m real-valued
target outcomes of interest, ŷj ∈ Rm. For example, in the case of a vehicle auction, these outcomes
could include the submitted bid values, the number of active bidders, and how many times the auction
was viewed. This approach leads to the following proposition, which reformulates a well-established
result from the computer science literature in the context of our economic application.
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Table 2 Schematic Illustration of Stage 1 Model Making m Point-predictions
Targets {y1(d), · · · yi(d), · · · ym(d)}
Token 1 {ŷ1,1 · · · ŷi,1 · · · ŷm,1}

...
... . . . ... . . . ...

Token j {ŷ1,j , · · · ŷi,j , · · · ŷm,j}
...

... . . . ... . . . ...
Token dmax {ŷ1,dmax , · · · ŷi,dmax , · · · ŷm,dmax}
Predictions {ŷ1(d) =

∑dmax
j=1 ŷ1,j · · · ŷi(d) =

∑dmax
j=1 ŷi,j · · · ŷm(d) =

∑dmax
j=1 ŷm,j}

Proposition 1. Let D = {(d,~y)} be a set of text descriptions d and associated economic information

vectors ~y ∈ Rm. For any error tolerance ε > 0, there exists a language model M : D → Rq×dmax , and

a decoding function H1 :Rq×dmax →Rm, such that

sup
(d,y)∈D

‖y − H1 ◦ M‖2 < ε.

Proof. See Appendix A

Drawing on established universal approximation theorems in neural networks, this result simply

restates that any information purposefully embedded in the language model’s representation space is

recoverable with arbitrary precision through an appropriate decoding function. Therefore, we apply

this approach to generating predictions ŷi,j on each token j’s contribution to target outcome i, and

produces a set of m observed market outcomes {y1(d), y2(d), . . . , ym(d)} with the estimated decoder,

Ĥ1 : ~ej → {ŷi,j} for all i ∈ {1, . . . ,m}, j ∈ {1, . . . ,dmax}. (1)

That is, the purpose of the Ĥ1 head is to decode the high-dimensional DEV representations of

the tokens in the object’s description into their individual contributions to the target outcomes.

This approach takes inspiration from the SHAP Value framework for additively estimating feature

importance (Lundberg and Lee 2017), therefore we produce aggregate predictions for each ŷi by

summing the individual token predictions on market outcome i together,

ŷi =
dmax∑
j=1

ŷi,j for all i ∈ {1, . . . ,m}

A schematic illustration of how token-level contributions produce estimates on the target outcomes

is provided in Table 2.

We optimize the estimated parameters in M̂ and Ĥ1 with a loss function that minimizes the mean

squared error (MSE) between the estimated market outcomes {ŷ1(d), ŷ2(d), . . . , ŷm(d)} and the true

observed market outcomes {y1(d), y2(d), . . . , ym(d)}. This is defined as

L1 = 1
|D|

∑
d∈D

m∑
i=1

[yi(d) − ŷi(d)]2 (2)
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where D represents the set of training samples. The loss function L1 ensures that the model learns
to produce accurate point predictions by reducing the squared deviations between the predicted and
actual market outcomes. We label the ensuing models, with the optimized parameters minimizing
L1, by M̂∗ and Ĥ∗

1.
While Stage 1 provides valuable insights into token-level contributions, it does not yet offer direct

inference on the underlying structural parameters governing market outcomes. To address this, the
second stage estimation process leverages the DEVs to project market-relevant information into the
parameter space of an econometric model, allowing for a more interpretable and structured analysis
of demand primitives. We describe this process in the next subsection.

3.3. Stage 2 Estimation: Token Level Contributions to Demand Primitives
The objective of Stage 2 is to estimate two latent demand primitives of our structural model: the
valuation distribution FV (v) and the market size distribution FN(n). While the machine learning
approach in Stage 1 successfully encodes market outcomes into DEVs derived from product descrip-
tions, these predictions alone do not identify the structural economic forces driving demand; for
further discussion, see Mullainathan and Spiess (2017), Iskhakov, Rust and Schjerning (2020). By
estimating the respective demand primitives via a structural model, we constrain the prediction
process to follow the assumed data generating process, which is essential for performing robust coun-
terfactual analyses. This structural approach enables us not only to infer the underlying relationships
generating consumer behavior but also to make reliable predictions for unseen applications, such as
new product descriptions or market structures, by ensuring that all counterfactual scenarios remain
consistent with the economic theory embedded in our model.

To enable a general and flexible representation of the valuation distribution, we employ a semi-
nonparametric approach developed by Gallant and Nychka (1987), Fenton and Gallant (1996a), and
Fenton and Gallant (1996b). Specifically, the density function fV (v) is approximated by,

f̂V (v) = c

[
1 +

κ∑
k=1

αk

(
v − µ

σ

)k
]2

ϕ(v | µ,σ) (3)

where ϕ(v | µ,σ) is the Gaussian density component that imparts location (µ) and scale (σ) properties,
and, for a given level κ ∈N, a Hermite polynomial expansion capturing the deviations from normality
through the weighted terms αk. The squaring of the expansion guarantees non-negativity, and the
normalizing constant,

c =

∫ ∞

−∞

(
1 +

κ∑
k=1

αk

(
z − µ

σ

)k
)2

ϕ(z | µ,σ)dz

−1

ensures that f̂V (v) integrates to one, and thus a well-defined probability density function. This
specification yields a parameter space for the valuation distribution of ~λV = {α1, . . . , ακ, µ, σ}.
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For the market size distribution, we adopt a semi-nonparametric approach that uses the softmax

function to construct a probability mass function. Specifically, the parameter space for the market

size distribution ~λN = {ρn, . . . , ρn}, consists of likelihood values ρr on the discretized grid of potential

bidder counts B = {n, . . . , n}, B ⊆ N. The likelihood values are then transformed via the softmax

function, which exponentiates and normalizes them so that they are nonnegative and sum to one.

This transformation yields a probability mass function for each n in the defined grid. That is, the

probability mass function fN(n) is approximated by, for n ∈ {n, . . . , n},

f̂N(n) = exp(ρn)∑
r∈B exp(ρr) (4)

This formulation not only captures the inherently discrete nature of market participation but also

allows for a flexible, data-driven estimation of the underlying bidder distribution.

Following Farrell, Liang and Misra (2020) on deep network architecture, our Stage 2 estimation

approach integrates a neural network with semi-nonparametric density estimation techniques. Specif-

ically, we append a fully connected network head, H2, to the fine-tuned language model M∗ from

Stage 1. For each product description d, M∗ encodes the set of token DEVs, {~ej}dmax
j=1 , which are

subsequently processed by H2. This network head maps the DEVs into the parameter spaces of both

distributions,

H2 : {~ej}dmax
j=1 → [~λV ,~λN ].

The dual-head architecture ensures that although both distributions are derived from the same

set of DEVs, each branch is tailored to its respective estimation task. The valuation branch outputs

the Hermite polynomial coefficients along with Gaussian parameters to capture continuous consumer

valuations, while the market size branch produces discrete probabilities for bidder participation via

the softmax function. By mapping DEVs into these conditional density spaces, H2 effectively trans-

lates the market-relevant signals encoded in Stage 1 into coherent, interpretable demand estimates

that are well-suited for structural analysis.

In order to train H2, i.e. estimate the model parameters, we need to specify how the latent demand

primitives, through the specific pricing mechanism P from Figure 3, generate the observed target

outcomes. In other words, the calibration of H2 is context-dependent on the data generating process.

Motivated by the ensuing empirical analyses, we illustrate by considering the English auction format

as the pricing mechanism.

The English Auction Pricing Mechanism and Equilibrium Bidding
In an English auction participating bidders sequentially submit incremental bids until no bidder is

willing to exceed the current highest bid and the auction concludes. It should be fairly intuitive that,

a rational bidder l, with private valuation vl, should continue to incrementally bid b+
l , as long as
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their surplus vl − b+
l is non-negative. Hence, bidders’ weakly dominant strategy is to bid up to their

valuation, b+
l ≤ vl, and, conditional on the seller’s reserve price pR being met, the final transaction

price is determined by the second highest valuation plus the bid increment submitted by the winning

bidder. To simplify notation, denote bidder l’s last bid as bl, l = 1, . . . , n. Given ordered valuations,

it follows that bl = vl, for l = 2, . . . , n, while b1 = v2 + binc, where binc is the minimum bid increment.

That is, for a subset of bidders, namely all non-winning bidders, we assume the last (maximum) bid

they submit represents their valuation. Note, in the English auction the winning bidder’s valuation

is censored and only known to exceed the second highest valuation with the minimum bid increment.

We apply this revelation of valuations through the equilibrium bid strategy to the auction data.

While the equilibrium bidding strategy for the English auction is robust to several complicating

factors, including risk tolerance and the number of bidders (Wolfstetter 1996), there are a couple

of potential shortcomings. First, it is unable to point identify the necessary order statistics in the

presence of jump bidding, i.e. bidding much more than the minimum bid increment; see Avery (1998),

Easley and Tenorio (2004). If there are large bid gaps due to jump bidding then assuming b∗
l = vl will

produce biased estimates. Second, this is also a concern if participation is temporally intermittent, or

sparse, or subject to rapid counter-bidding. For instance, if two bidders aggressively counter-bid each

other, then the price trajectory might escalate quickly such that other bidders’ last bids are far below

their respective valuations. Finally, if there are multiple ongoing, or sequential, auctions of identical

or similar objects, then bidders may strategically not bid up to their valuation in a given auction,

in anticipation of maximizing their expected surplus over a set of auctions. These shortcomings may

thus introduce estimation bias on the order statistics of the 2nd,3rd,4th, . . . highest valuations. We

address these concerns in our inclusion criteria for the auction data discussed in the empirical section

of the paper.

Given that the equilibrium bid strategy can serve as reasonable proxies for bidders’ private valua-

tion, we use the approximated density and probability mass functions, f̂V (v) and f̂N(n), to predict

the order statistics of the observed bids in the auctions. Specifically, recall that the number of bid-

ders n is drawn from FN(n), and bidders’ valuation are drawn i.i.d. from FV (v). This implies that

conditional on a realized market size n, the estimated density function for the order statistics of the

top l ≤ n valuations, is given by, for l′ = l, . . . ,2,1,

f̂V(l′)
(v|n) = n!

(l′ − 1)!(n − l′)! f̂V (v)(F̂V (v))n−l′(1 − F̂V (v))l′−1 (5)

Using Equation (5), the structural model F numerically computes the (conditional on market size

n) expectation of the top l order statistic by,

Ê
[
V(l′) | n

]
=
∫ ∞

−∞
vf̂V(l′)

(v|n)dv
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To compute the unconditional expectation, we average over the distribution of n, for l′ = l, . . . ,2,1,

Êd

[
V(l′)

]
=

n∑
n=n

f̂N(n) Ê
[
V(l′) | n

]
Finally, we collect these expectations into a vector representing the predictions of the l largest bids,

[
b̂1, b̂2, . . . , b̂l

]
=
[
Êd

[
V(1)

]
, Êd

[
V(2)

]
, . . . , Êd

[
V(l)
]]

(6)

To train H2, we optimize its parameters to ensure that the estimated valuation and market size

distributions generate expected bid predictions via F that align with the observed bid results. As

previously discussed, the largest bid b1 is biased downward due to the bidding strategies induced

by the English auction. Therefore, H2 is trained to estimate valuations {V2, . . . , Vl}, using the bids

{b2, . . . , bl}, according to their computed order statistics from F . We do this by minimizing the mean

squared error (MSE) between the predicted bids b̂ and the observed bids b for the bids that can proxy

for bidder valuations. The loss function is given by,

L2 = 1
|D|

∑
d∈D

l∑
l′=2

[
bl′(d) − b̂l′(d)

]2
(7)

where D represents the set of training auctions. This objective ensures that the estimated distribu-

tions F̂V (v) and F̂N(n) generate bid predictions that match empirical observations. Similar to above

in Stage 1, we denote H∗
2 as the model with the optimized parameters that minimize L2.

Although the estimation framework for F is tailored for English auctions, our broader approach can

accommodate alternative market settings. For example, in posted-price markets, firms set prices based

on expected residual demand rather than competitive bidding. Similarly, in bargaining environments,

price formation is influenced by strategic negotiation between buyers and sellers. To extend our

methodology to such settings, the structure of F must be adjusted to reflect the equilibrium conditions

that govern the formation of prices in these alternative markets.

4. Language Model Training and Structural Model Estimation
The foundation of our training framework is the Robustly Optimized BERT Pretraining Approach

(RoBERTa) language model introduced by Liu et al. (2019). RoBERTa is an advanced variant of

the Bidirectional Encoder Representations from Transformers (BERT) model that demonstrated

how a transformer-based language model could encode information from unstructured text (Devlin

et al. 2018). In our application to online auction data, we use RoBERTa to initialize our language

model M, which facilitates a two-stage training process to extract structured demand representations

and estimate the underlying economic primitives governing the observed auction outcomes. Table 3

summarizes training setup and the hyperparameter settings used in both stages.
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Table 3 Model Training Setup and Hyperparameters

Stage 1 Stage 2
Training Objective Encoding Demand Estimating Structural Parameters
Parameters M (RoBERTa) and H1 H2

Targets ~y Bids b2, b3, b4, b5 Bids b2, b3, b4, b5
Auction Views

Auction Watchers
No. Active Bidders

Reserve Met Indicator 1[b1 ≥ pR]
Training Dataset 74,698 Authentic and 298,792 Synthetic Descriptions
Validation Dataset 5,000 Authentic Descriptions
Optimizer AdamW AdamW
Learning Rate 3 × 10−5 (max) 3 × 10−5 (max)
β1 0.9 0.9
β2 0.999 0.999
ε 1 × 10−8 1 × 10−8

Scheduler Linear Decay w/ Warmup Linear Decay w/ Warmup
Warmup Steps 300 1000
Training Iterations 25 epochs, batch size 64 15 epochs, batch size 32
Note: Target values in ~y were perturbed with a small amount of Gaussian noise during
training to prevent over-fitting (aside from our indicator variable).

For the empirical analysis, only auctions that met the time-based inclusion criteria, which required

that the last (largest) bids from five unique bidders be submitted within 3 hours of the auction’s

end time, were used in the training and validation sets. This resulted in a total of 74,698 auctions

for training and 5,000 auctions withheld (i.e. not seen by the model during training) for validation

analysis. More details regarding the data in provided below in Section 5.

4.1. Stage 1: Encoding Demand Embedding Vectors

The objective of Stage 1 is to train M to encode demand-relevant outcomes into the embeddings

generated from the auction items’ descriptions. Given that RoBERTa processes token sequences with

a maximum context length of d = 510 tokens, we account for the constraint that the average auction

description in our dataset contains 622 tokens (ranging from 419 at the 5th percentile to 872 at

the 95th percentile). Since our analysis indicates that the most economically valuable information is

concentrated at the beginning of the text, we do not expect this truncation to significantly impact

the model’s predictive capacity.

To project the demand embedding vectors ~e from M into the auction outcome space, we append

a fully connected neural network layer, H1. This layer serves as a decoding mechanism that trans-

lates the high-dimensional text embeddings into a structured set of predictions ~̂y for the market

target outcomes ~y. Specifically, H1 produces estimates for the second through fifth highest bid values

(b2, b3, b4, b5), as well as auction-level engagement metrics such as total views, watchers, and unique

bidders. During training, a small amount of Gaussian noise was added to the true target values of
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these variables to prevent over-fitting of the model. Additionally, it predicts whether the auction’s

reserve price pR was met, denoted by the binary indicator 1[b1 ≥ pR]. Given the binary nature of this

target outcome, we apply a sigmoid transformation to the prediction made by H1 to ensure its values

are in the unit interval, [0,1]. Stage 1 is trained for 25 epochs using the AdamW optimizer with a

maximum learning rate of 3 × 10−5 and a linear warmup decay schedule. We employ a batch size of

64 and monitor the mean squared error (MSE) loss in equation (2) across all predicted outcomes in

the training dataset.

4.2. Stage 2: Estimating Structural Demand Parameters

The second stage of training refines the structured representations of demand learned in Stage 1 by

estimating the latent distributions of consumer valuations and market size in our structural model

F . While Stage 1 provides direct predictions of auction outcomes, Stage 2 introduces a structural

estimation framework that parameterizes the probability density functions of the demand primitives

as defined in equations (3) and (4), allowing for a deeper economic interpretation of how textual

descriptions influence bidder behavior.

In Stage 2, the demand embeddings ~e from M∗ are frozen and passed through a nonlinear trans-

formation layer in H2. This transformation extracts a lower-dimensional representation optimized for

structural inference. The transformation consists of two fully connected layers with hidden dimen-

sions of 32 and 16, each followed by LayerNorm regularization and a SiLU activation function, which

introduces smooth non-linearity to enhance feature extraction while maintaining numerical stability.

Separate output heads within H2 then estimate the parameters of the valuation distribution FV (v)
and market size distribution FN(n). The optimization objective stated in equation (7) for Stage 2

minimizes the discrepancy between the 2nd − 5th-largest bids submitted by unique bidders and those

generated from the estimated joint order statistic distributions in equation (5). As in the Stage 1

estimation, a small amount of Gaussian noise was added to these variables during training.

Similar to Liu and Bagh (2020), we use Sobol sequences — low-discrepancy quasi-Monte Carlo

(QMC) sequences — to efficiently approximate the expectations of these order statistics. This

approach provides more uniform coverage of the probability space compared to standard Monte

Carlo sampling (Morokoff and Caflisch 1995, Jäckel 2002), and also allows for a more stable and

sample-efficient numerical integration when computing bid expectations over the estimated valuation

distribution. Stage 2 is trained using the AdamW optimizer with a learning rate of 3 × 10−5 and a

batch size of 32. The training process spans 15 epochs and incorporates a linear warmup schedule

with 1,000 warmup steps.

Once trained, the full model consists of M∗ and H∗
2, which are evaluated on held-out auction data to

assess generalization. The combination of Stage 1 demand encoding and Stage 2 structural framework
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allows us to move beyond direct outcome prediction, allowing a more interpretable framework to

analyze bidder willingness to pay and auction participation. In the empirical section that follows,

we validate the predictive accuracy of the model and perform counterfactual simulations to examine

how different vehicle descriptions influence estimated demand.

5. Online Vehicle Auction Data – BringATrailer.com
For the empirical application of our estimation method, we collected data from bringatrailer.com

(BaT), one of the largest online vehicle auction marketplaces in USA. BaT utilizes an ascending

English auction mechanism with a secret reserve price pR for their vehicle auctions. The description

of each auction vehicle is written by BaT staff following a stylized template that reviews the history of

the vehicle, its current condition, any modifications or restorations, and its provenance; see Appendix

B for an example description to an auction listing for a 2018 Porsche 911.

Each auction begins at $1 (all prices in USD), typically with a seven day clock that eventually ends

the auction. To avoid snipe bidding, BaT automatically extends the auction’s clock by two minutes

whenever a new bid is submitted within this threshold. When the auction concludes, the highest bid

b1 is privately compared to the vehicle’s secret reserve price pR, and automatically announced as to

whether the reserve was met. If the seller’s reserve price is met (b∗
1 ≥ pR), then the winning bidder

pays the seller the amount b∗
1. In addition, the winning bidder is charged a BaT transaction fee of 5%

of b∗
1 or $250, whichever was greater, but no more than $5,000, i.e. min(max(.05 × b∗

1,$250),$5,000).

If the seller’s reserve price is not met (b∗
1 < pR), then BaT connects the highest bidder with the

seller to attempt a privately negotiated a sale price. However, regardless of the outcome, the seller is

charged an unrecoverable listing fee of $99.

Important to this study, all text-based communications and bids submitted during a given auction

were publicly recorded in a chat section at the bottom of the auction’s webpage. While presumably

designed to enhance the social aspects of the auction site, and reduce some information asymmetries,

our estimation methods benefit from having every submitted bid timestamped and user-specified by

BaT. We sourced all market data from the information in these chat sections.

5.1. Descriptive Summary Statistics

From July 2014 through December 2023, BaT held a total of 89,080 auctions, however only 79,698

of them met our inclusion criteria that the final bids from five unique bidders be submitted within

3 hours of the auction’s end time. This decreased the likelihood that some high value bidders were

not present toward the end of the auction. Additionally, recall that to mitigate snipe biding, BaT

extended the end time by two minutes whenever a bid was submitted within the last two minutes.

We summarize the characteristics of the auctions meeting the inclusion criteria in Table 4.

bringatrailer.com
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Table 4 Descriptive Statistics of sample BringATrailer.com data (July 2014 - December 2023)

79,698 Auctions Mean St. Dev. Min. Max.
Bidding Duration (Days)† 6.902 .920 .0097 21.054
1[Sold by Dealer] .316 .465 0 1
1[max(b) ≥ r] (Reserve Met) .772 .419 0 1
No. of Active Bidders 12.007 4.522 1 39
Auction Views (1000s) 14.209 9.782 .698 358.191
Auction Watchers (1000s) .726 .349 .060 6.105
Nominal Bid Values
Winning Bid (in 1000s) $44.452 $79.284 $.105 $5,360
Normalized Bid Values
1st Largest (Winning) Bid 1 n/a 1 1
2nd Largest Bid .969 .056 .000 .999
3rd Largest Bid From...

...All Bidders .941 .083 .000 .998

...Non-winning Bidders .878 .120 .000 .998
All Bids† .662 .261
All Unique Bidders’ Max. Bids† .615 .295
Fraction of Bids
Submitted in Final... 5 Min. 15 Min. 1 Hr. 24 Hr.
1st Largest (Winning) Bid 1 1 1 1
2nd Largest Bid .810 .854 .901 .966
3rd Largest Bid From...

...All Bidders .738 .794 .849 .935

...Non-winning Bidders .835 .860 .891 .948
All Bids† .160 .342 .470 .633
All Unique Bidders’ Max. Bids† .190 .270 .358 .517
199,468 Unique Bidders Mean St. Dev. Min. Max.
No. Auctions Participated 4.797 15.655 1 1856
Fraction of Bidders
Who Won...Auctions 0 ≥1 ≥2 ≥5

.749 .251 .059 .009
† Calculated for auctions that had at least three bidders.

Approximately 31.6% of the auctions were managed by dealers, and the reserve prices were met in

77.2% of cases. Bidder participation averaged 12.007 active bidders per auction, with a minimum of

1 and maximum 39 unique bidders. For bid values, the average winning bid across the auctions was

$44,452, with the highest recorded bid reaching $5,360,000 and the lowest at $105. When normalized

for analysis with the highest bid set to 100%, the second and third highest bids averaging 96.9% and

94.1%, respectively, of the winning bid. Notably, the third highest bids submitted by non-winning

participants (i.e. those who did not ultimately submit the single largest bid) averaged slightly lower,

at 87.8% of the highest bid.
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The timing of bids demonstrates regular late bidding, with a significant portion of activity occurring

close to the auction’s conclusion. Specifically, 16% of all bids were submitted in the final five minutes,

34.2% in the last 15 minutes, 47% within the last hour, and 63.3% on the final day. While partly a

consequence due to BaT default listing of auctions in ascending order of remaining time, i.e. auctions

closest to end are listed first, it also reflects that it is only the most committed bidders that actively

participate. Thus providing further support to that bidders are bidding up to their valuation.

The auction platform engaged a total 199,468 unique bidders during our data collection period,

each participating in an average of 4.797 auctions. Despite this active engagement, 74.9% of bidders

never won an auction, and only 25.1% won at least once. Furthermore, only a small fraction of the

participants achieved multiple wins: 5.9% won at least twice, and a mere 0.9% won five or more

auctions.

5.2. Authentic and Synthetic Data

To enhance the robustness of our estimation process, we supplement the auction house’s standardized

vehicle descriptions with a sample of 298,792 synthetic descriptions generated by the LLAMA 3.1

70B model (Dubey et al. 2024). This augmentation is particularly valuable in Stage 1, where the

language model learns to encode descriptions into structured demand representations. The structured

nature of BaT’s descriptions, while useful for consistency, may limit the language model’s ability to

generalize across different buyer perspectives and listing styles. Synthetic descriptions mitigate this

risk by introducing diverse linguistic and conceptual framing, allowing the model to better capture

the heterogeneity in how vehicle attributes are perceived by bidders.2

To generate synthetic descriptions, we simulate the personas of four distinct automotive experts:

an Independent Vehicle History Report Provider; a Certified Automotive Mechanic; a Car Enthusiast

Club President; and a Vehicle Appraiser. Each expert role is designed to emphasize different aspects

of the vehicle, including provenance, mechanical integrity, enthusiast appeal, and market valuation.

The descriptions are generated iteratively, with each expert receiving a prompt instructing them

to evaluate a vehicle based on an authentic description sourced from our dataset. This process

ensures that the generated content goes beyond simple paraphrasing, embedding distinct evaluative

insights that would otherwise be absent from the auction house’s standardized listings. A truncated

comparison of authentic and synthetic descriptions for one vehicle is presented in Table 5.

By using multiple expert perspectives, we ensure that key factors influencing auction out-

comes—such as mechanical reliability, market desirability, and historical significance—are explicitly

addressed in the training data. For example, while a mechanic might highlight potential repair costs

and long-term reliability, an appraiser would focus on rarity, market trends, and comparative sales

2 For other results on using diversified personas during model training, see Jandaghi et al. (2023) and Ge et al. (2024).



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. Initial Submission: March, 2025 19

Table 5 Sample Description Format - Authentic vs. Synthetic
Description Format, Authentic Description Format, Synthetic
Title: Modified 1974 BMW 3.0CS Title: Modified 1974 BMW 3.0CS

Date: February 27, 2024 Date: February 27, 2024

Description: This 1974 BMW
3.0CS was refurbished before being
acquired by the current owner in
November 2021, and work included
rust remediation, a repaint, an
interior refresh, and updates to the
brake and suspension systems...

Review: This 1974 BMW 3.0CS
appears to be a well-maintained
and tastefully modified example of
a classic car. The extensive refur-
bishment indicates a thorough and
high-quality restoration. The modifi-
cations, such as the CSL-style...

data. This methodological design not only enhances the language model’s ability to extract mean-

ingful demand signals but also improves generalization, particularly for vehicles with limited auction

history or those falling outside the most commonly listed categories.

Beyond improving model flexibility, the use of synthetic data allows us to assess robustness by test-

ing whether valuation predictions remain stable across different textual framings of the same vehicle.

By systematically varying the presentation of information while maintaining factual consistency, we

evaluate whether the model’s demand estimates are sensitive to linguistic and contextual differences.

Additionally, the presence of diverse description styles helps prevent overfitting to a single mode

of vehicle presentation, reducing biases that might emerge if the model were trained exclusively on

auction house-generated descriptions.

6. Empirical Analysis of Online Vehicle Auction Data
We begin our analysis of the trained model by evaluating its predictive accuracy on held-out auction

data and assessing its ability to capture key economic relationships in the online vehicle auction

market. Specifically, we test how well the model’s Stage 1 predictions align with observed auction

outcomes, including bid values, auction engagement metrics, and reserve price attainment. We then

examine the structural estimates produced in Stage 2, validating the recovered valuation and market

size distributions against empirical bid distributions. Finally, we conduct counterfactual simulations

to analyze how variations in vehicle descriptions influence estimated demand primitives, allowing us

to quantify the economic impact of textual attributes on bidding behavior and price formation.

6.1. Stage 1 Validation Results of Demand Embedding Vectors

Figure 4 presents the distribution of prediction errors on the Stage 1 targets, evaluated on the held-

out validation dataset of 5,000 authentic auction descriptions. The panels representing the log bid

estimates are presented in scatter plots (x-axis is target, y-axis is prediction), while the number of

auction views, watchers, and unique bidders are presented as error histograms in percentage terms.
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We present the nominal error of the indicator for whether the reserve price was met at the conclusion
of the auction. The distributions of all bid-related errors are approximately centered around zero
with an average absolute error of 15-16%, indicating that the model does not exhibit systematic bias
in over- or under-predicting bid values. Similarly, the prediction errors for views and watchers show a
symmetric distribution, suggesting a balanced estimation of auction engagement. The unique bidders
panel exhibits a slight right skew, indicating that the model occasionally underpredicts participation
in high-competition auctions.

The final panel reports the model’s prediction accuracy for whether the reserve price was met.
Approximately 77% of auctions in the validation dataset resulted in a sale, and the model correctly
classifies roughly 75% of these outcomes. This suggests that the model has not learned much about
how the auction house sets its reserve prices, likely because this process is determined by seller
preferences rather than directly reflecting market demand. However, since reserve price setting is not
a direct indicator of bidder valuation, this limitation has minimal implications for the model’s core
objective of estimating demand. Overall, the validation results indicate that the model provides a
well-calibrated representation of auction outcomes, with minimal systemic biases in its predictions.

To demonstrate where the model assigns its estimated value within the description of a vehicle, we
present a randomly selected description in Figures 5 and 6. Here, we provide token-level annotations
that visualize the impact each token in the vehicle description has on the auction bid value submitted
by the price-setting bidder (i.e. the bidder with second largest bid). Each token within the description
is enclosed in a grayscale box where the depth of the gray shade represents the estimated USD value
that the token adds to the bid. The darker the shade, the higher the contribution of that token to
the bid value, as indicated in the gradient legend. This technique is useful for identifying significant
features and attributes that influence bidding behavior.

The token-level analysis of price-setting bids reveals clear patterns in how different aspects of a
vehicle’s description contribute to its estimated auction price. Tokens with the highest contributions
generally relate to the vehicle’s identity, exclusivity, and auction-specific signals. Notably, references
to the make/model, its no reserve status, and its “Manhattan Automobile Company” origin signif-
icantly increased the estimated price, suggesting that bidders value brand prestige, high-end trim
levels, and a transparent auction process. Mentions of the vehicle’s history in New York and Florida
also contributed strongly, likely due to market desirability and reduced concerns about winter-related
wear. Performance and luxury features, such as the 5.0-liter V8 engine, ventilated and massaging
seats, navigation system, and 20-inch alloy wheels, were also strong price indicators, reinforcing the
premium placed on high-performance specifications and rare comfort features. Conversely, lower-value
contributions were associated with standard equipment, maintenance records, and general descrip-
tors, indicating that routine service history and common vehicle features do not significantly impact
bidding behavior.
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Figure 4 Stage 1 Validation Prediction Errors (sample size: 5,000)
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-1000 0 1000 2000 3000 USD

Title: No Reserve: 2013 Jaguar XJL Portfolio

Date: June 03, 2022 at 05:45 PM

Description: This 2013 Jaguar XJL Portfolio was sold new by Manhattan Automobile Company

and spent time in New York and Florida prior to the selling dealer’s acquisition in 2022. The

car is finished in Carnelian Red over London Tan leather upholstery and powered by a 5.0-liter

V8 paired with an eight-speed automatic transmission. Equipment includes 20 inch wheels, rear

tray tables, a heated steering wheel, four-zone automatic climate control, navigation, a panoramic

sunroof, a Meridian audio system, and heated and ventilated seats with front seat massaging

elements. The water pump was replaced in 2018 and service in preparation for the sale

reportedly consisted of performing an oil change in addition to replacing the battery and the

front control arms. This XJL has 42k miles and is now offered at no reserve by the selling dealer

in Illinois with a clean Carfax report and a clean Pennsylvania title. The body is finished in

Carnelian Red and equipped with brightwork consisting of a Leaper hood ornament, a mesh

grille, side mirror caps, and window trim. Additional features include a panoramic sunroof,

bi-xenon headlights with washers, vented fenders, and front and rear parking sensors. The

selling dealer notes a stone chip on the hood and blemishes are visible on the bumper covers.

Silver-finished 20 inch Kasuga alloy wheels wear 245/4o front and 275/35 rear Hankook Ventus

V12 EVO2 tires. Stopping power is provided by four wheel disc brakes, and the car is equipped

with an Adaptive Dynamics suspension. The front control arms have been replaced in

preparation for the sale, according to the selling dealer. The heated and ventilated front and

rear seats are trimmed in London Tan leather with Navy piping. Burl walnut veneers accent the

dashboard, steering wheel, door panels, and rear tray tables, and additional amenities

include front seat massage and memory settings, four-zone automatic climate control, rear

sunshades, an 8 inch touchscreen infotainment system with navigation, and a 14-speaker

Meridian audio system. A heated multifunction steering wheel frames a digital instrument

panel that includes a 170-mph speedometer, a tachometer, and a combination gauge.
Figure 5 Stage 1 Estimation: Token’s Contribution to Price-setting Bid

The factors influencing auction views differ significantly from those driving the price-setting bid,

highlighting distinct mechanisms underlying bidder engagement and price determination. Tokens

contributing to higher auction views tend to emphasize broad visibility and desirability, with strong

impacts from the vehicle’s brand identity, color, trim, and key luxury features. Mentions of Jaguar
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XJL, No Reserve, and Carnelian Red substantially increased auction traffic, likely because these ele-

ments enhance listing appeal and encourage prospective bidders to explore the auction. Additionally,

auction-specific timing and dealer history played a crucial role, as seen in the high contributions

from auction date and time, Manhattan Automobile Company, and New York, indicating that search

behavior and perceived vehicle provenance influence initial engagement.

In contrast, the price-setting bid was more directly influenced by factors tied to valuation, com-

petitive bidding, and price-setting characteristics. While brand identity and luxury cues remained

important, their impact on final bid levels was more nuanced. Performance-related specifications,

such as the 5.0-liter V8 engine and eight-speed automatic transmission, played a stronger role in

determining bid increments than in attracting views, reflecting their importance in bidder willingness

to pay. Similarly, maintenance history and vehicle condition, which had only a moderate effect on

views, contributed more significantly to the price-setting bid, suggesting that bidders scrutinize reli-

ability and upkeep more closely when committing to higher bids rather than when initially engaging

with the auction.

Another key contrast is the role of unique or high-end features. Elements such as ventilated seats,

panoramic sunroof, and Meridian audio system were strong drivers of views, but their impact on price-

setting bids was less pronounced, indicating that while these features attract attention, they do not

necessarily translate into higher willingness to pay. Conversely, mechanical integrity and major service

records, which had limited influence on auction views, played a larger role in bid determination,

reinforcing the idea that serious bidders weigh long-term ownership costs more heavily than casual

viewers. Overall, auction views are driven by immediate listing appeal and search visibility, while the

price-setting bid is influenced by valuation-relevant attributes that justify higher price commitments.

This distinction underscores how different aspects of a vehicle’s description engage different stages

of bidder decision-making, with attention-grabbing features bringing bidders to the auction and

valuation-relevant factors guiding final price formation.

The significance of this model lies in its ability to pinpoint precisely where the value is being per-

ceived at the token level within a vehicle’s description. By understanding which features or attributes

carry more weight in the bidding process, sellers can strategically tailor their descriptions to empha-

size these valuable aspects, potentially increasing the final bid amounts. This approach ultimately

enhances the richness of the dataset, providing a more nuanced understanding of the factors that

drive auction dynamics.

6.2. Stage 2 Empirical Estimation of Valuation and Market Size

Figure 6.2 presents the nominal prediction errors from the structural Stage 2 model, evaluated on the

validation dataset (sample size 5,000). Each panel reports the log prediction error for the 2nd through
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Title: No Reserve: 2013 Jaguar XJL Portfolio

Date: June 03, 2022 at 05:45 PM

Description: This 2013 Jaguar XJL Portfolio was sold new by Manhattan Automobile Company

and spent time in New York and Florida prior to the selling dealer’s acquisition in 2022.

The car is finished in Carnelian Red over London Tan leather upholstery and powered by a 5.0-liter

V8 paired with an eight-speed automatic transmission. Equipment includes 20 inch wheels, rear

tray tables, a heated steering wheel, four-zone automatic climate control, navigation, a panoramic

sunroof, a Meridian audio system, and heated and ventilated seats with front seat massaging

elements. The water pump was replaced in 2018 and service in preparation for the sale

reportedly consisted of performing an oil change in addition to replacing the battery and the

front control arms. This XJL has 42k miles and is now offered at no reserve by the selling dealer

in Illinois with a clean Carfax report and a clean Pennsylvania title. The body is finished in

Carnelian Red and equipped with brightwork consisting of a Leaper hood ornament, a mesh

grille, side mirror caps, and window trim. Additional features include a panoramic sunroof,

bi-xenon headlights with washers, vented fenders, and front and rear parking sensors. The

selling dealer notes a stone chip on the hood and blemishes are visible on the bumper covers.

Silver-finished 20 inch Kasuga alloy wheels wear 245/4o front and 275/35 rear Hankook Ventus

V12 EVO2 tires. Stopping power is provided by four wheel disc brakes, and the car is equipped

with an Adaptive Dynamics suspension. The front control arms have been replaced in

preparation for the sale, according to the selling dealer. The heated and ventilated front and

rear seats are trimmed in London Tan leather with Navy piping. Burl walnut veneers accent the

dashboard, steering wheel, door panels, and rear tray tables, and additional amenities

include front seat massage and memory settings, four-zone automatic climate control, rear

sunshades, an 8 inch touchscreen infotainment system with navigation, and a 14-speaker

Meridian audio system. A heated multifunction steering wheel frames a digital instrument

panel that includes a 170-mph speedometer, a tachometer, and a combination gauge.
Figure 6 Stage 1 Estimation: Token’s Contribution to Auction Views

5th highest bids, which were estimated using the inferred valuation and market size distributions.

The error distribution for each bid rank is characterized by its first and second moments. For the 2nd

highest bid, the mean error is 0.1505 with a standard deviation of 0.3255, indicating a distribution

centered slightly above zero with moderate dispersion. The 3rd highest bid exhibits a mean error of
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Figure 7 Validation Prediction Error on 2nd, 3rd, 4th and 5th Largest Bids (sample size: 5,000)

0.0924 and a standard deviation of 0.3092, while the 4th highest bid has a mean error of 0.0637 and

a standard deviation of 0.2994. The 5th highest bid shows a mean error of 0.0331 with a standard

deviation of 0.2866.

These estimates suggest that prediction errors are distributed with a slight positive bias, with

variability largely stable across bid ranks. The standard deviation remains substantial relative to the

mean error, highlighting nontrivial dispersion in prediction accuracy. While these moments provide a

high-level characterization of the error structure, additional distributional analysis may be necessary

to identify whether deviations arise from model misspecification or unmodeled heterogeneity in the

underlying bid-generating process.

6.3. Zero-Shot Learning: The DMC DeLorean

A natural test of this model’s ability to generalize beyond its training distribution is to evaluate

its predictive performance on vehicles that were entirely absent from the training set. To assess

this capability, we deliberately withheld a specific make and model from both the training and

validation datasets: the DMC DeLorean. The vehicle, famous from the Back to the Future movies,

possesses a distinct combination of design elements, historical significance, and cultural associations

that are unlikely to be collectively shared by any other vehicles in the dataset. Consequently, accurate
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predictions on this category of vehicles would provide strong evidence that the model has successfully
learned generalizable demand patterns within the target market.

In total, the dataset contained 366 auctions for DMC DeLoreans, none of which were seen by
the model during training. Figure 6.3 presents the nominal prediction errors for these zero-shot
evaluations, focusing on the model’s Stage 2 predicted bids from the actual second-to-fifth largest
bids observed that met our inclusion criteria in each auction. The prediction errors for the zero-shot
evaluation of the DMC DeLorean exhibit distinct characteristics relative to the broader validation
set. Across all bid ranks, the mean errors are negative, ranging from -0.0354 to -0.0876, suggesting
a systematic tendency toward underprediction. The median errors follow a similar pattern, with
values between -0.0219 and -0.0743, indicating that the central tendency of the error distribution
is consistently below zero. The standard deviation of the errors remains relatively stable across bid
ranks, ranging from 0.1604 to 0.1801. This suggests that while the model exhibits a slight downward
bias in its predictions for the DeLorean, the overall dispersion of errors is comparable to that observed
in the general validation dataset. The root mean squared error (RMSE) values, which vary between
0.1824 and 0.1860, further reinforce this observation, showing little fluctuation across bid ranks. One
possible explanation for the systematic underprediction is the model’s inability to fully account for
the cultural and historical significance of the DMC DeLorean, particularly its association with the
Back to the Future franchise. Unlike standard vehicle attributes such as performance, production
volume, or brand reputation, the DeLorean’s demand dynamics are heavily influenced by its status as
an iconic pop culture artifact. This historical and cultural context is difficult to infer from structured
auction data alone, as the model lacks direct access to external sources that encode the persistent
influence of media-driven valuation. Consequently, the model may fail to recognize that bidders
assign additional value to the DeLorean not merely as a collectible vehicle, but as a symbol of 1980s
nostalgia and science fiction fandom.

Our fine-tuned model’s ability to make robust out-of-sample predictions on vehicles it has never
encountered directly stems from the deep representations learned during pretraining (Wei et al.
2021). Large-scale language models, such as RoBERTa, are trained on extensive corpora that include
information about a wide range of consumer goods, historical events, and market trends. It is likely
that the foundational model trained in Liu et al. (2019) was exposed to content about the DeLorean,
including its production history, collector status, and pop culture significance. During the fine-tuning
process in Stage 1, these latent representations were likely preserved and refined within the context
of auction markets, allowing the model to infer a reasonable valuation for the DeLorean by posi-
tioning it relative to other vehicles with similar attributes in the dataset. However, this explanation
remains speculative, as testing whether and how these representations were preserved is beyond the
scope of this paper. Future research could more directly investigate the extent to which pretrained
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Figure 8 Zero-shot Predictions: DMC DeLorean (sample size: 366)

language models retain and adapt knowledge representations during fine-tuning, particularly in eco-

nomic applications (see Templeton 2024).

6.4. Counterfactual Simulations: Systematically Varying Vehicle Mileage

To assess the economic consistency of our trained model, we conduct a series of counterfactual

simulations that systematically vary a key determinant of vehicle value: mileage. Vehicle mileage

is one of the most robust indicators of depreciation, influencing resale values across all makes and

models. Therefore, as a robustness check, we test whether the model’s price-setting bid predictions

exhibit an economically reasonable response to changes in reported mileage. Due to the computational

cost of this analysis, we randomly select a subset of 1,000 vehicles from the validation dataset and use

a large language model (LLAMA 3.1 70B) to generate modified versions of each vehicle’s description

while holding all other details constant. Specifically, we replace the mileage value in the original

description with one of six predetermined values: 25k, 50k, 75k, 100k, 125k, and 150k miles. Each

edited description is then processed by the trained Stage 2 model to generate a new set of predicted

price-setting bids.

Figure 9 presents the results of this experiment, where the price-setting bid predictions are normal-

ized to 1 for the 25k-mile counterfactual and 0 for the 150k-mile counterfactual. Across all vehicles
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Figure 9 Counterfactual Mileage Simulations (sample size: 1,000)

included in the analysis, the model predicts a monotonic decline in the price-setting bid as mileage
increases. This finding aligns with standard economic expectations regarding vehicle depreciation,
and reinforcing the model’s ability to appropriately internalize the role of accumulated mileage in
determining vehicle value.

These results also highlight the utility of our framework for evaluating the marginal effects of key
vehicle attributes on expected auction outcomes. By systematically modifying vehicle descriptions
and observing the model’s predictions, researchers and practitioners can conduct detailed counter-
factual analyses that would be infeasible to observe in real-world auction data. Future work could
extend this approach by examining other vehicle characteristics, such as accident history, number of
previous owners, or specific aftermarket modifications, to further explore the model’s sensitivity to
economically relevant factors.

7. Conclusion
This paper introduces a novel approach to demand estimation that integrates language models with
structural econometric techniques to infer primitives of demand from unstructured textual descrip-
tions. By training a RoBERTa-based model in a two-stage process, we demonstrate how natural
language descriptions of auctioned vehicles can be systematically transformed into structured eco-
nomic representations that capture latent demand primitives. Our empirical validation using online
vehicle auction data confirms that the proposed model effectively encodes market-relevant informa-
tion, yielding competitive predictive accuracy on auction outcomes while preserving interpretability
through its structural estimation framework.
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A key strength of our approach is its ability to generalize beyond the training distribution, as

evidenced by the model’s performance on zero-shot predictions for the DMC DeLorean. This result

highlights the potential of language models to leverage their pre-trained knowledge when making

economic inferences in unfamiliar contexts, a property that could be further explored in other market

settings. Additionally, our counterfactual simulations on vehicle mileage confirm the model’s ability

to produce economically coherent predictions, reinforcing its capacity to extract meaningful demand

signals from textual descriptions.

These findings have several important implications for both researchers and practitioners. For

firms and auction platforms, the ability to extract consumer demand signals directly from product

descriptions offers a new avenue for pricing strategy and inventory management. Rather than relying

solely on historical sales data, firms can leverage language models to predict demand for new products,

optimize product descriptions for maximum market appeal, and conduct counterfactual analysis to

explore pricing and positioning strategies. From a methodological perspective, our study contributes

to the growing literature on machine learning applications in economics by demonstrating how deep

learning models can be integrated with structural estimation techniques to improve demand inference.

Despite these contributions, important avenues for future research remain. First, while our

approach successfully captures demand primitives from textual data, further work is needed to under-

stand how fine-tuned language models retain and adapt pre-trained knowledge for economic inference.

The extent to which language models internalize and preserve economic reasoning during domain-

specific training is an open question that warrants further exploration using interpretability methods,

such as feature attribution and causal probing techniques. Second, while our empirical application

focuses on English auctions, the underlying framework could be extended to other market settings,

including posted-price markets, bargaining environments, and two-sided platforms where product

descriptions and buyer preferences interact dynamically. Lastly, given the rapid evolution of language

model architectures, future studies could investigate how different model families (e.g., multimodal

models with vision capabilities) compare in their ability to encode and generalize economic informa-

tion.
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Appendix A: Proofs of Propositions

A.1. Proposition 1

Let d denote a text description and ~y ∈Rm represent the vector of m economic outcomes associated with d.
Let M be a language model that maps a text description d to a set of embedding vectors {~ej} ∈ Rq, where
j ∈ {1,2, ...,dmax} represents the token position. Let H1 be a projection function that maps these embeddings
to predicted economic outcomes ~̂y ∈Rm. The composition of these functions gives us ~̂y = H1 ◦ M(d).

To establish the claim, we must show that for any error tolerance ε > 0, there exist parameterized versions
of these models M∗ and H∗

1 such that

‖y − H∗
1 ◦ M∗(d)‖2 < ε

for all (d, y) pairs in our dataset D.
By the Universal Approximation Theorem for Transformers (Yun et al. 2019)3, for any continuous function

f mapping sequences to sequences and any ε > 0, there exists a transformer network T such that

‖f(x) − T (x)‖2 < ε/2

for all inputs x in the domain. Similarly, by the classical Universal Approximation Theorem for Feed-Forward
Networks (Hornik, Stinchcombe and White 1989), for any continuous function g and any ε > 0, there exists
a feed-forward network H such that

‖g(~e) − H(~e)‖2 < ε/2

for all embeddings ~e in the relevant domain. Let f∗ be an ideal function that maps text descriptions directly
to embeddings that perfectly encode the economic outcomes, and g∗ be a function that maps these ideal
embeddings to the true economic outcomes. By the first theorem, there exists a language model M∗ such
that

‖f∗(d) − M∗(d)‖2 < δ

where δ is chosen to ensure that the subsequent projection error is sufficiently small. By the second theorem,
there exists a projection function H∗

1 such that

‖g∗(~e) − H∗
1(~e)‖2 < ε/2

for all embeddings ~e in the range of M∗. Assuming H∗
1 is L-Lipschitz continuous,

‖H∗
1 ◦ f∗(d) − H∗

1 ◦ M∗(d)‖2 ≤ L · ‖f∗(d) − M∗(d)‖2 < L · δ.

We can choose δ = ε/(2L) to ensure L · δ < ε/2. Combining these inequalities through the triangle inequality,
‖y − H∗

1 ◦ M∗(d)‖2 = ‖g∗(f∗(d)) − H∗
1 ◦ M∗(d)‖2

≤ ‖g∗(f∗(d)) − H∗
1(f∗(d))‖2 + ‖H∗

1 ◦ f∗(d) − H∗
1 ◦ M∗(d)‖2

< ε/2 + L · δ

< ε/2 + ε/2

= ε

3 See also Lu and Lu (2020).
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Therefore, the composition H∗
1 ◦ M∗ can approximate the mapping from text descriptions to economic

outcomes with arbitrary precision ε. To establish that the economic information can be recovered from the

embeddings, we note that H∗
1 serves as a decoding function. The embeddings {~ej} produced by M∗

1 must

contain all the information needed to reconstruct y within the specified error bound, otherwise H∗
1 ◦ M∗(d)

could not achieve the arbitrary precision approximation we proved above.

Appendix B: Dataset Details

Example description from our dataset:

“This 2018 Porsche 911 GT2 RS has 15k miles and is powered by a twin-turbocharged 3.8L flat-six linked

with a seven-speed PDK dual-clutch automatic transaxle and a limited-slip differential. It is finished in

black over black leather and Alcantara upholstery and equipment includes the $18k Weissach Package,

the Sport Chrono Package, 20 inch and 21 inch magnesium center-lock wheels, carbon-ceramic brakes

with yellow calipers, a front-axle lift system, rear-axle steering, LED headlights with Porsche Dynamic

Light System (PDLS), a rear wing, carbon-fiber full bucket seats, Porsche Communication Management

(PCM), navigation, automatic climate control, a CD stereo, a Bose sound system, the Light Design

Package, and an extended-range fuel tank. The car spent time in Pennsylvania, Montana, and California

through the current owner’s acquisition in 2020. This 991 GT2 RS is now offered on dealer consignment

with factory literature, an accident-free Carfax report, and a clean California title. Weight savings were

targeted with the GT2 RS program, and Porsche fitted multiple carbon-fiber components including

the hood, front fender vents, side intakes, side mirrors, and rear wing. The Weissach Package reduces

weight further through the use of carbon fiber for the roof panel and the anti-roll bars. Downforce is

increased with a large rear wing, underbody diffuser, and a deeper front fascia, while NACA ducts in

the front trunk lid aid in brake cooling. This example is finished in black and features LED headlights

with Porsche Dynamic Lighting System (PDLS), fog lights, dual exhaust outlets, and fender vents.

Paint protection film has reportedly been applied to the exterior. Staggered-diameter 20 inch and 21

inch magnesium center-lock wheels are mounted with Michelin Pilot Sport Cup 2 R tires measuring

265/35 up front and 325/30 at the rear. The car is equipped with adjustable dampers and anti-roll bars,

Porsche Active Suspension Management, Porsche Stability Management, and rear-axle steering. Porsche

Ceramic Composite Brakes were standard on the GT2 RS and feature yellow calipers and cross-drilled

rotors. The optional front-axle lift raises the car on command to help prevent scraping.”
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